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ABSTRACT Candida auris has emerged as a significant global nosocomial pathogen.
This is primarily due to its antifungal resistance profile but also its capacity to form
adherent biofilm communities on a range of clinically important substrates. While
we have a comprehensive understanding of how other Candida species resist and
respond to antifungal challenge within the sessile phenotype, our current under-
standing of C. auris biofilm-mediated resistance is lacking. In this study, we are the
first to perform transcriptomic analysis of temporally developing C. auris biofilms,
which were shown to exhibit phase- and antifungal class-dependent resistance pro-
files. A de novo transcriptome assembly was performed, where sequenced sample
reads were assembled into an ~11.5-Mb transcriptome consisting of 5,848 genes.
Differential expression (DE) analysis demonstrated that 791 and 464 genes were up-
regulated in biofilm formation and planktonic cells, respectively, with a minimum
2-fold change. Adhesin-related glycosylphosphatidylinositol (GPI)-anchored cell
wall genes were upregulated at all time points of biofilm formation. As the bio-
film developed into intermediate and mature stages, a number of genes encoding
efflux pumps were upregulated, including ATP-binding cassette (ABC) and major fa-
cilitator superfamily (MFS) transporters. When we assessed efflux pump activity bio-
chemically, biofilm efflux was greater than that of planktonic cells at 12 and 24 h.
When these were inhibited, fluconazole sensitivity was enhanced 4- to 16-fold. This
study demonstrates the importance of efflux-mediated resistance within complex
C. auris communities and may explain the resistance of C. auris to a range of antimi-
crobial agents within the hospital environment.

IMPORTANCE Fungal infections represent an important cause of human morbidity
and mortality, particularly if the fungi adhere to and grow on both biological and in-
animate surfaces as communities of cells (biofilms). Recently, a previously unrecog-
nized yeast, Candida auris, has emerged globally that has led to widespread concern
due to the difficulty in treating it with existing antifungal agents. Alarmingly, it is
also able to grow as a biofilm that is highly resistant to antifungal agents, yet we
are unclear about how it does this. Here, we used a molecular approach to investi-
gate the genes that are important in causing the cells to be resistant within the bio-
film. The work provides significant insights into the importance of efflux pumps,
which actively pump out toxic antifungal drugs and therefore enhance fungal sur-
vival within a variety of harsh environments.
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Fungal infections affect in excess of a billion people, resulting in approximately 11.5
million life-threatening infections and more than 1.5 million deaths annually (1).

Candida auris is an emerging fungal pathogen that has attracted considerable attention
because of its ability to cause infections that are difficult both to diagnose and to treat
(2). It has been responsible for a number of nosocomial outbreaks worldwide through
its ability to persistently colonize and be transmitted between patients and the
environment (3–6). Despite the unprecedented global emergence of this organism,
relatively little is known about the molecular basis of its pathogenicity and antifungal
resistance phenotype. The resistance profile is well documented, with �90% of isolates
intrinsically resistant to fluconazole. Resistance to other azoles, polyenes, and echino-
candins has also been reported (4). Alarmingly, 41% of isolates have been shown to be
multidrug resistant, with 4% demonstrating pan-drug resistance (4). Hot spot mutations
in ERG11 and FKS1 have been identified as resistance mechanisms in azole- and
echinocandin-resistant strains, respectively (7, 8).

Candida biofilms represent an important clinical entity associated with adaptive
resistance to many antifungals and are linked to excess morbidity and mortality (9–11).
Although Candida albicans is regarded as the primary biofilm-forming pathogen within
the genus, there are increasing interest in and evidence for non-Candida albicans-
species biofilms (12, 13), particularly those of C. auris. Clinically, C. auris has been
isolated from a number of sites, including wounds, line tips, and catheters, suggestive
of the organism existing within a biofilm lifestyle in the host (14, 15). We recently
described the ability of C. auris to form antifungal-resistant biofilms, against all 3 main
classes of antifungals (16), and yet the mechanisms underlying this phenotype remain
unknown. The speed of discovery in this emerging pathogen has certainly been
hindered by the lack of robust sequence information. Initial sequencing efforts pro-
vided a draft C. auris genome; however, these reads were poorly aligned to other
Candida spp. and inconsistently annotated (17). More recently, complete and function-
ally annotated genome assemblies have been created, allowing the analysis of the
functional capacity of the genome to be studied under clinically relevant conditions
(18). Biofilm-associated resistance is a complex and multifaceted phenomenon that has
been described in a number of fungal pathogens. Various resistance mechanisms exist,
predominately associated with the extracellular matrix (ECM), overexpression of drug
targets, and efflux pumps (19). Given the lack of understanding of biofilm formation
and resistance mechanisms in C. auris, we therefore aimed to investigate these mech-
anisms using a transcriptomics approach.

RESULTS
Candida auris biofilms exhibit temporal antifungal resistance. Mature Candida

auris biofilms have been shown to be resistant to antifungals that are readily active
against their planktonic equivalents (16). We therefore investigated the temporal effect
of biofilm formation on the susceptibility to all three major classes of antifungals. As
demonstrated in Fig. 1A, the maturation of C. auris biofilms was shown to correlate with
decreased susceptibility to each antifungal agent. When assessed planktonically,
the median MIC for the four isolates of miconazole was 1 �g/ml, that of micafungin
was �0.25 �g/ml, and that of amphotericin B was 0.5 �g/ml (range, 0.125 to
0.5 �g/ml). After 4 h of biofilm development, no increases in resistance were
observed against micafungin (MIC, �0.25 �g/ml); however, the median MIC increased
16-fold to 16 �g/ml (range, 16 to 32 �g/ml) for miconazole and 4-fold to 2 �g/ml for
amphotericin B (range, 1 to 4 �g/ml). As the biofilm matured to 12 h of growth, 2-fold
increases in median MIC were shown for miconazole (range, 16 to 64 �g/ml) and
amphotericin B (range, 2 to 4 �g/ml). Interestingly, the MIC was shown to significantly
increase for micafungin (range, 1 to �128 �g/ml) after 12 h. After 24 h, no further
increase in MIC was observed for amphotericin B. However, both miconazole and
micafungin MICs were increased 2-fold to 64 �g/ml and �128 �g/ml, respectively.

Candida auris transcriptome assembly. Given the temporal patterns of biofilm-
associated resistance, we undertook a transcriptional profiling approach to understand
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the mechanisms governing antifungal biofilm resistance (Fig. 2). Sequencing of samples
using Illumina HiSeq produced around 414 million single-end reads of 50-bp length.
Following processing, the number of reads was reduced by 3 million through trimming
and quality control stages. All sequenced sample reads were then assembled into an
~11.5-Mb transcriptome which consisted of 5,889 identified Trinity transcripts and
5,848 genes based on the longest isoform of transcripts. At least half of the assembled
sequenced bases were found on contigs of a length of 3,488 bp (N50) (Table 1). The
completeness and quality of the C. auris transcriptome were assessed with BUSCO
(Benchmarking Universal Single-Copy Orthologs) against Ascomycota (94%), Saccharo-
myceta (91.4%), and Saccharomycetales (91.7%) gene sets. Very small percentages of
duplicate, fragmented, and missing genes were observed in each of the gene sets
(Table 2).

Identification by sequence homology searches with BLASTx function yielded anno-
tation of 54% of Trinity transcripts and 54% of unique “genes.” Identification of protein

FIG 1 Candida auris biofilm development correlates with increased antifungal tolerance. Candida auris
biofilms were standardized at 1 � 106 CFU/ml and grown for 4, 12, and 24 h. Biofilm biomass was then
quantified using the crystal violet assay, with the composition of biofilm cells enumerated using qPCR
and represented by a box-and-whisker plot as the total biomass of four C. auris isolates (A, left y axis).
Planktonic susceptibility testing was performed against serially diluted miconazole, micafungin, and
amphotericin B concentrations using the CLSI guidelines, with biofilm susceptibility testing performed
using the XTT assay and with median MIC values plotted (A, right y axis). In addition, biofilms were grown,
fixed, and processed for SEM before imaging using a JEOL-JSM-6400 scanning electron microscope.
Micrographs represent lower magnification (�1,000) and higher magnification (inset, �5,000) of biofilms
grown for 4 h (Bi), 12 h (Bii), and 24 h (Biii).
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sequences with BLASTp, against TransDecoder-identified open reading frames (ORFs)
and potential coding sequences, gave functional annotation matches with 51% of the
transcripts and 41% of unique “genes” (Table 1). The presence of known signal
peptides, functional protein domains, and protein topology was discerned by searches
against the SignalP and TMHMM databases, respectively. Of the predicted proteins, 202
sequences were predicted to have signal peptides and 701 transmembrane protein
topologies were predicted.

Additional annotation was performed via the software BLAST2GO, which obtains
BLAST hits that are used to retrieve and map gene ontology (GO) and KEGG terms. It
also utilizes InterProScan, which acquires functional annotation of protein sequences

FIG 2 Bioinformatic pipeline for Candida auris transcriptome assembly, annotation, and analysis.

TABLE 1 Summarized statistics for transcriptome assembly of Candida auris, alignment
rate of raw reads to transcriptome, and summary of Trinotate functional annotation

Category Value

No. of reads
Total 414,364,539
After trimming 411,626,529

Total no. of assembled bases 11,593,681
GC content, % 45.35

Total no. by Trinity
“Genes” 5,848
“Transcripts” 5,889

Contig (bp)
N50 3,488
Median 1,308
Avg 1,983

No. of reads aligned (%)
1 time 393,124,946 (95.51)
�1 time 9,368,727 (2.28)
Overall 402,493,673 (97.78)

Functional annotation, no. of transcripts
Swiss-Prot matches, BLASTx 3,200
Swiss-Prot unique proteins, BLASTx 3,176
Swiss-Prot matches, BLASTp 3,041
Swiss-Prot unique proteins, BLASTp 3,019
TMHMM 701
SignalP 202
Gene Ontology 3,085
KEGG 2,889
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from EBI’s InterPro databases (https://www.ebi.ac.uk/interpro/). These databases are a
consortium of online databases that include PANTHER, Pfam, and SUPERFAMILY (20).
Both the Trinotate and BLAST2GO annotation files are supplied as Data Set S1 in the
supplemental material.

BLAST2GO searches were performed with a fungus taxonomical filter, which anno-
tated 1,157 genes with BLAST and an additional 4,365 genes from the InterPro
databases. InterPro and BLAST-derived GO terms were merged to give a total of 9,504
GO annotations assigned to 2,479 genes. These annotations were distributed among
three main GO categories, biological process (3,633, 38%), cellular component (3,116,
33%), and molecular function (2,755, 29%) (Fig. S1). InterProScan was able to classify
Trinity transcripts according to superfamilies based on known structures. The best-
represented superfamilies were the P-loop-containing nucleoside triphosphate hydro-
lase (236 genes), the major facilitator superfamily (MFS) (113 genes), Armadillo-type
fold (102 genes), and protein kinase-like superfamily (90 genes) (Fig. S2). From anno-
tation against the available databases, there were 6 major enzyme classes represented,
which included hydrolyases (290 genes), transferases (150 genes), oxidoreductases (88
genes), ligases (21 genes), lyases (22 genes), and isomerases (15 genes) (Fig. S3).

DE and functional annotation of C. auris biofilms. Differential expression (DE)
analysis was performed to investigate the transcriptional changes observed with
biofilm development. Multivariate analysis by principal-component analysis (PCA) dem-
onstrates variance between the different time points; 0 h shows the greatest variance
from the other biofilm time points. In addition, there is also some variance between
biofilms at 4, 12, and 24 h (Fig. 3A). DE analysis demonstrated that 791 and 464 genes
were upregulated in biofilm formation and planktonic cells, respectively, with a mini-
mum 2-fold change (Fig. 3A). Phase-dependent differential expression of these upregu-
lated genes is illustrated in the Venn diagram in Fig. 3B, with the downregulated genes
shown in Fig. 3C; individual genes are described in Data Set S2. Of these biofilm-
upregulated genes, selected genes involved in antifungal resistance and biofilm-
associated mechanisms are listed in Table 3. Glycosylphosphatidylinositol (GPI)-
anchored cell wall genes, including IFF4, CSA1, PGA26, and PGA52, were upregulated at
all time points of biofilm formation, highlighting their potential role within cellular
adhesion (Table 3). Two further adhesins, HYR3 and ALS5, were also shown to be
upregulated but only in mature biofilms (Table 3). As the biofilm developed into
intermediate and mature stages, a number of genes encoding efflux pumps were
upregulated, including RDC3, SNQ2, CDR1, and YHD3. In addition, MDR1 was shown to
be upregulated at the 24-h time point (Table 3). To understand the functional processes
related to differentially expressed genes, a cutoff of 2-fold upregulation (adjusted
P value of �0.05) was used for gene ontology (GO) analysis comparing planktonic cells
to 24-h biofilms. The 278 differentially expressed genes were assigned to 28 GO terms
with an overenrichment P value of �0.05, comprising 13 biological processes, 9 cellular
components, and 6 molecular functions, and contained a number of differentially
expressed functional categories (Fig. 4A). Included within these GO terms were trans-
membrane transport, within which several ATP-binding cassette (ABC) and major
facilitator superfamily (MFS) transporters were highly upregulated in C. auris biofilms
(Fig. 4B).

TABLE 2 Assessment of Candida auris transcriptome assembly by Benchmarking
Universal Single-Copy Orthologs (BUSCO)

% genes Ascomycota Saccharomyceta Saccharomycetales

Complete 94 91.4 91.7
Complete single copy 93.4 90.5 90.9
Complete duplicated 0.6 0.9 0.8
Fragmented 3.4 4.8 4.6
Missing 2.6 3.8 3.7

Total no. of genes 1,315 1,759 1,711
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Efflux pumps play a primary role in antifungal resistance in C. auris biofilms.
Transcriptional analysis and function annotation revealed a significant upregulation of
a number of drug efflux pumps, from both ABC and MFS transporters. To confirm the
role of these membrane proteins within biofilms, we assessed efflux pump activity. Both
12- and 24-h biofilms exhibited increased efflux compared to planktonic cells, with 4-h
biofilms below the detectable limit of the assay. Efflux from 12-h biofilms was 2.21-fold
(P � 0.05) greater than that from planktonic cells, with a 2.38-fold increase shown in
24-h biofilms (P � 0.005). No statistical differences were observed between 12- and
24 h-biofilms (Fig. 5). Interestingly, efflux pump activity is shown to be constitutively
expressed within biofilms, with no induction observed in response to azole antifungals
(Fig. S4).

Given the increased activity of efflux pumps in biofilms, we then assessed the
contribution of these transporters to fluconazole sensitivity (Table 4). When biofilms
were incubated for 12 h in the presence of fluconazole, the sessile MIC50 (SMIC50)
ranged between 32 and �128 �g/ml. However, when also grown in the presence of

FIG 3 Quality control and differential expression analysis of C. auris biofilms. Principal-component analysis displays
the largest variance along PC1 (56%) and the second largest variance between samples along PC2 (15%) (A). Venn
diagrams of the genes upregulated (B) and downregulated (C) in biofilm time points (4, 12, and 24 h) compared
to 0 h.
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fluconazole and an efflux pump inhibitor (EPI), the SMIC50 ranged between 2 and
16 �g/ml for all isolates, ranging from a 4- to 16-fold increase in susceptibility. The
same trend was observed for 24-h biofilms, with the SMIC50 range between 64 and
�128 �g/ml for fluconazole-only treatment, with 2- to 8-fold reductions observed with
coincubation with the EPI (SMIC50, 8 to 64 �g/ml).

DISCUSSION

The rapid and simultaneous emergence of the pathogenic yeast C. auris, combined
with its reported recalcitrance to all three major classes of antifungals, has led to a
concerted response by the medical mycology community to understand and define the
mechanisms underpinning its pathogenicity and resistance. Although preliminary in-
vestigations have investigated genetic point mutations promoting resistance (7, 8), as
well as a number of efflux pumps identified within its genome (17, 18), there are still
substantial gaps remaining in our understanding. Moreover, irrespective of these
defined chromosomally derived resistance characteristics, adaptive resistance mecha-
nisms associated with environmental stressors are likely to be a key contributor to its
success as a pathogen in both the host and the environment. We have recently
reported how C. auris exhibits enhanced pathogenicity and resistance, both in vitro and
in vivo, and that the biofilm phenotype is instrumental in its lifestyle (14, 16, 21, 22), and
moreover, in its ability to survive and persist in the nosocomial environment, increasing
the probability of causing outbreaks. We have recently reported that adherent C. auris
cells display substrate-dependent susceptibility to clinically relevant concentrations of
hospital disinfectants (22) and that these biofilms were shown to be resistant to
chlorhexidine and hydrogen peroxide, displaying a less susceptible phenotype than
C. albicans and Candida glabrata (21). Here, we report for the first time that efflux-based
resistance mechanisms play an important role in biofilm-mediated resistance in C. auris
and that conserved biofilm-related genes are temporally observed, as illustrated in
Fig. 6.

To investigate this, we undertook an RNA sequencing-based approach for the
analysis of C. auris biofilm development, as well as profiling genes associated with
resistance and virulence mechanisms. Assembly of the transcriptome using Trinity
software has allowed us to construct a specific reference for our samples of interest.
Additionally, annotation via numerous methods has allowed for an in-depth functional
characterization of the organism. Annotation of homologs, predicted protein domains,
and gene ontological classifications further enhances our ability to interpret mecha-
nisms that differentiate C. auris under different conditions. This annotated transcrip-

TABLE 3 Upregulated biofilm- and resistance-associated genes

Gene
identifier Function

Fold change compared to
planktonic cells (log2)

4 h 12 h 24 h

IFF4 Adhesion 2.29 5.01 3.62
PGA26 Adhesion 2.02 3.90 2.55
PGA52 Adhesion 2.22 2.38 2.42
CSA1 Adhesion 3.87 6.47 6.43
PGA7 Adhesion 3.94 4.82
HYR3 Adhesion 2.06
ALS5 Adhesion 3.82
RDC3 Efflux pump 4.29 3.91
SNQ2 Efflux pump 2.63 3.42
CDR1 Efflux pump 2.30 3.19
YHD3 Efflux pump 2.14 2.15
MDR1 Efflux pump 2.3
KRE6 Extracellular matrix 3.92 3.09
EXG Extracellular matrix 2.69 2.26
SAP5 Hydrolytic enzyme 2.19
PLB3 Hydrolytic enzyme 2.13
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tome has been highly instrumental in expression analysis and elucidation of virulence
mechanisms of C. auris in this and forthcoming studies.

The initiation of biofilm formation depends on an initial adherence phase of
colonization of a specific surface before subsequent proliferation to promote disease.
A number of GPI-linked cell wall proteins were upregulated at the early biofilm time
point, highlighting their role in the initial adherence stage. In C. albicans, IFF4 and CSA1
have been shown to be involved in adherence to both mucosal and abiotic substrates,
as well as cell-cell cohesion (23–25). Transcriptional studies from Fox et al. identified
IFF4 as a member of a group of 10 adhesion genes that are induced at the later stages

FIG 4 Functional annotation of differentially expressed genes reveals upregulation of drug transporters. Gene
distribution of significantly upregulated C. auris genes in 24-h biofilms relative to planktonic cells, grouped into
biological process (BP), cellular component (CC), and metabolic function (MF) gene ontology categories (A). Log2

fold change of upregulated ABC and MFS drug transporters within 24-h biofilms (B). All GO terms have a P value
of �0.05 based upon the GOSep hypergeometric distribution test.
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of biofilm formation and hypothesized its role in mediating cell-cell contact (26).
Interestingly, an iff4Δ null mutant displayed decreased adhesion at an early stage of
biofilm formation, as well as attenuated virulence (27). Both studies collectively high-
light its function throughout biofilm formation.

In C. albicans, members of the agglutinin-like sequence (ALS) proteins play a key role
in the adherence of the organism, predominantly through ALS3 (28, 29). A recent study
identified that members of this cell wall protein family detected in C. albicans are not
found in C. auris (18). Our analysis revealed that orthologs of only two members, ALS1
and ALS5, were represented within the C. auris transcriptome, with the latter upregu-
lated within mature biofilms. Further examination of cell wall protein families by Muñoz
et al. failed to reveal any highly expanded families (18). It is therefore likely that a less
reliant ALS-dependent adherence mechanism exists for C. auris. Moreover, the gene
encoding candidapepsin-5, commonly known as SAP5 in C. albicans, was shown to be
upregulated in mature biofilms. This protease is predominantly associated with its role
in invasive infection (30). Indeed, studies have identified its increased expression in
biofilm-associated infections (31), with sap5Δ/Δ strains demonstrating a less adherent
phenotype, therefore highlighting its potential as a promising biofilm biomarker (32).

One of the most defining characteristics of biofilms is their recalcitrance to antimi-
crobial agents. As described in other Candida species, biofilm-associated drug resis-
tance comprises a number of different mechanisms that coordinate with one another
through the various phases of biofilm development (33). An underlying mechanism
across Candida spp. is the upregulation of efflux pumps within biofilm-associated cells
(34–36). Planktonically, C. auris isolates displayed up to 15-fold-higher ABC transporter
activity than C. glabrata isolates (15), highlighting a potential intrinsic azole resistance
mechanism. Ramage et al. demonstrated that expression of CDR1 and MDR1 was
increased within mature C. albicans biofilms compared to their planktonically grown
equivalents, and yet deletion of these genes had no effect on the susceptibility of
mature biofilms (37). Indeed, temporal efflux pump analysis revealed that efflux pump

FIG 5 Efflux pump activity is increased in Candida auris biofilms. Candida auris biofilms were grown for
4, 12, and 24 h in black-bottomed 96-well plates. In addition, planktonic cells were standardized to 5 �
107 cells/ml, all cells were incubated with 100 �g/ml of Ala-Nap, and fluorescence measurements were
read at 30-s intervals over 60 min (excitation, 355 nm; emission, 460 nm). Data represent the mean �
standard deviation of 4 isolates repeated on 3 independent occasions. Data presented are relative
fluorescence units (RFU) normalized per individual cell. *, P � 0.05; **, P � 0.01; ND, not detectable.

TABLE 4 Inhibition of efflux pumps increases azole susceptibility

Isolate no.

Fluconazole SMIC50 (�g/ml) at time:

12 h 24 h

With
EPIa

Without
EPI

Fold
change

With
EPI

Without
EPI

Fold
change

NCPF8971 16 64 4 16 �128 �8
NCPF8973 2 32 16 8 64 8
NCPF8984 16 �128 �8 64 �128 �2
NCPF8990 8 32 4 16 64 4
aEPI, efflux pump inhibitor.
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mutants were more susceptible to fluconazole treatment than their parental strain at
early phases of biofilm development (36), as also shown in other fungal pathogens,
such as Aspergillus fumigatus (38). Our own temporal analysis of C. auris biofilms
revealed that efflux pumps were upregulated at intermediate and mature phases of
development, unlike other species, though they did not appear to be inducible following
azole exposure. This is in contrast to analysis of C. glabrata biofilms exposed to azole
treatment, where upregulation of genes encoding ABC transporters was observed (35).
Muñoz et al. recently analyzed the transcriptional profile of planktonic C. auris in response
to azole and polyene antifungals (18). After exposure of a resistant C. auris strain to
amphotericin B, almost 40 genes were shown to be differentially expressed. These included
genes involved in iron transport that have previously been described in C. albicans to be
involved in its response to amphotericin B (39). Three of these genes (SIT1, PGA7, and RBT5)
were shown to overlap within our own biofilm data set, indicating that these may play an
additional role in our observed polyene resistance.

A further key mechanism of Candida biofilm resistance is the formation of the ECM,
which functions to provide stability and sequestration of drugs from the biofilm, as well
as protection from environmental stressors (40). Recent studies have now identified
that various Candida spp. conserve a constitutive polysaccharide backbone that func-
tions to impede antifungal delivery, and yet the composition of the ECM varies between
species (41, 42). Although its composition remains unknown, it could be hypothesized
that C. auris ECM would be similar to that of C. glabrata, given the yeast cell biofilm
phenotype. Temporal analysis has shown that the formation of the ECM is time
dependent and associated with intermediate and maturation phases of biofilm forma-
tion (43). Our data suggest that this is similar in C. auris, with increased expression of
KRE6 and EXG, a glucan-1,3-beta-glucosidase and a close ortholog of XOG1 in C. albi-
cans, respectively, two genes involved in matrix formation (44, 45).

Given the alarming global emergence of antifungal resistance, the requirement
for new antifungals is pivotal (46). Drug efficacy and development have plateaued in
recent years, yet an encouraging number of molecules remain within the antifungal
pipeline (47, 48). Several studies have assessed the positive efficacy of novel com-
pounds, including APX001, CD101, SCY078, and ceragenins, against C. auris (49–52),
which may widen the spectrum of active agents against emerging resistant species.
These active agents are both expansions of current drug targets, such as 1,3-�-glucan
synthase inhibitors (CD101 and SCY078), and novel targets, such as GPI protein
inhibitors (APX001). All of these compounds demonstrated significant in vitro activity
against planktonic forms of C. auris, with APX001 also demonstrating enhanced in vivo

FIG 6 Formation and development of Candida auris biofilms. Schematic representation of the transcriptional
mediators of the three main stages of C. auris biofilm development: adherence of yeast cells to surface (early
phase), proliferation (intermediate phase), and maturation into a structured biofilm (mature phase).
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efficacy compared to anidulafungin (51, 53). Although these preliminary data are very
promising, there are limited studies evaluating their effect against sessile C. auris. The
1,3-�-glucan synthase inhibitor SCY078 was shown to significantly reduce biofilm
thickness and metabolic activity after a prolonged 48-h exposure (54). Furthermore, the
CSA-44 and CSA-131 ceragenins, a class of antimicrobial peptides, also demonstrated
antibiofilm activity, although the concentrations needed were 4- to 64-fold greater than
the planktonically active equivalent (52). APX001 is a first-in-class compound that acts
by blocking GPI synthesis through inhibition of the GPI-anchored cell wall transfer
protein 1 (Gwt1). Although no such studies have been performed, perhaps then
APX001 is the most attractive antibiofilm target, given our identified function of
GPI-anchored proteins in C. auris biofilm formation.

Given that we can now genetically manipulate this pathogenic yeast (55, 56), future
work analyzing the functional roles and processes of specific genes and proteins will
further enhance our understanding of biofilm-associated pathogenicity and resistance.
Unraveling the key factors that regulate the transcriptional network that exists for
C. auris, similar to those studies in C. albicans and Candida parapsilosis (26, 57), may
provide translational insights into novel avenues for therapeutic targets for biofilm-
associated infections. We have shown that efflux pumps are important during biofilm
development, and this may explain why this seemingly innocuous yeast is able to
survive, persist, and cause continued problems within the hospital setting.

MATERIALS AND METHODS
Microbial growth and standardization. Four C. auris clinical isolates were used throughout this study

(NCPF8971, NCPF8973, NCPF8984, and NCPF8990) (58). Isolates were stored in Microbank vials at �80°C prior
to use, before they were subcultured onto Sabouraud dextrose agar (SAB [Sigma, Dorset, United Kingdom])
and incubated at 30°C for 48 h. Isolates were propagated overnight in yeast peptone dextrose (YPD) medium
(Sigma, Dorset, United Kingdom), before washing with centrifugation as previously described (59). Cells were
then standardized to 1 � 106 cells/ml in RPMI 1640 medium, and biofilms were grown in microtiter plates,
75-cm2 tissue culture flasks, or Thermanox coverslips for 4, 12, and 24 h at 37°C.

Characterization of biofilm formation. Isolates were standardized as described above and grown
for 4, 12, and 24 h at 37°C. Following growth, biofilms were washed with phosphate-buffered saline (PBS;
Sigma, Dorset, United Kingdom), and biomass was quantified using the crystal violet assay, as previously
described (59). In addition, biofilm composition was analyzed using propidium monoazide (PMA)
quantitative PCR (qPCR), a method able to differentiate live cells from a population (60). Samples were
prepared as previously described (60), before sonication in 1 ml of PBS at 35 kHz for 10 min in an
ultrasonic water bath to remove and disaggregate the biofilm (61). After sonication, samples were
incubated in the dark with 50 �M PMA (Cambridge BioScience, Cambridge, United Kingdom) for 10 min
to allow uptake of the dye. All samples were then exposed for 5 min to a 650-W halogen light before DNA
was extracted using the QIAamp DNA minikit, per the manufacturer’s protocol (Qiagen, Crawley, United
Kingdom). One microliter of extracted DNA was then added to a master mix containing Fast SYBR Green
master mix, RNase-free water, and 10 �M C. auris-specific forward and reverse primers (forward,
CGCACATTGCGCCTTGGGGTA; reverse, GTAGTCCTACCTGATTTGAGGCGAC) (62). Real-time qPCR was then
used to enumerate the total of number of live cells from within the biofilm, using the following thermal
profile: 50°C for 2 min and 95°C for 2 min, followed by 40 cycles of 95°C for 3 s and 60°C for 30 s.
Colony-forming equivalents (CFE) were then calculated based upon a standard curve of serially extracted
DNA ranging from 1 � 108 to 1 � 104 cells/ml.

Biofilm visualization. Biofilms were standardized and grown on Thermanox coverslips (Fisher
Scientific, Loughborough, United Kingdom) as described above. At selected time points, biofilms were
washed with PBS before processing for scanning electron microscopy (SEM). Biofilms were fixed in 2%
paraformaldehyde, 2% glutaraldehyde, 0.15 M sodium cacodylate, and 0.15% (wt/vol) alcian blue, before
being processed as previously described (59). Biofilms were then sputter coated in gold before being
viewed under a JEOL-JSM-6400 microscope.

Planktonic and sessile susceptibility testing. Planktonic MICs (pMICs) were determined visually
using the Clinical and Laboratory Standards Institute M27-A3 broth microdilution method (63). Stan-
dardized cells were treated with serial 2-fold dilutions of miconazole nitrate (0.25 to 128 mg/liter),
micafungin (0.25 to 128 mg/liter), and amphotericin B (0.063 to 32 mg/liter). In addition, biofilms were
grown for 4, 12, and 24 h as described above before treatment with the same concentrations as
planktonic cells. Sessile MICs (sMICs) were determined using the XTT [2,3-bis(2-methoxy-4-nitro-5-
sulfophenyl)-2H-tetrazolium-5-carboxanilide salt] metabolic reduction assay (64). The sMIC was calcu-
lated as the concentration leading to 80% reduction in XTT colorimetric readings in comparison to an
untreated positive control.

RNA extraction and sequencing analysis. Following biofilm characterization, C. auris NCPF8973,
originally isolated from a wound swab (14), was chosen for subsequent transcriptomic analysis. Biofilms
were grown as described above in 75-cm3 tissue culture flasks before being washed with PBS, and
biomass was dislodged using a cell scraper. The resultant biofilm biomass was then homogenized using
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a bead beater, and RNA was extracted using the Trizol (Life Technologies, Paisley, United Kingdom)
method (65). Following extraction, RNA was DNase treated and purified using the RNeasy MinElute
cleanup kit per the manufacturer’s instructions. Quality and quantity were assessed using a Bioanalyzer
(Agilent, USA), where a minimum quantity of 2.5 �g and a minimum-quality RNA integrity number (RIN)
value of 7.0 were obtained for each sample. Samples were then submitted to Edinburgh Genomics
(http://genomics.ed.ac.uk/) before sequencing using the HiSeq 2500 Illumina sequencer. Biological
triplicates were analyzed for all variables, with the exception of 4-h biofilms, for which two replicates
were used due to sequencing failure.

Transcriptome annotation and differential expression analysis. Raw fastq reads were quality
controlled using Trim Galore v0.4.5 (https://github.com/FelixKrueger/TrimGalore) to remove Illumina
adapters and trim reads with a quality score lower than 20. Reads were then aligned to the RefSeq
genome sequence B8441 using HISAT2 (66). The aligned reads were then coordinate sorted, and SAM
files were converted to BAM before all aligned reads were merged using SAMtools (38). The resulting
aligned reads were assembled de novo using genome-guided Trinity v2.5.1 (66). The completed tran-
scriptome was assessed by using the contig length distribution metrics (N50), percentage of annotation,
and the third-party Benchmarking Universal Single-Copy Orthologs (BUSCO) v3 assessment program
(http://busco.ezlab.org/). Annotation of candidate open reading frames (ORFs), identified with Trans-
Decoder v5.0.2 (http://transdecoder.sourceforge.net/), was then performed using the Trinotate v3.1.0
package (https://trinotate.github.io/). Trinotate performs functional annotation of transcriptomes from
the UniProt Swiss-Prot database via homology searches with the Basic Local Alignment Search Tool
(BLAST) functions BLASTp for protein queries and BLASTx for nucleotide queries. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) EggNOG identifiers were also inferred from the
Swiss-Prot protein database. BLAST2GO annotation was additionally performed, which also relies upon
BLAST but includes the annotation from European Bioinformatics Institute (EBI) InterPro databases. The
extraction through to the annotation is summarized in Fig. 2. The reference transcriptome created by
Trinity was used to create an index, and the trimmed reads were then counted and annotated against
this index using Kallisto gene abundance quantification software. Gene abundance files for each sample
replicate were then imported into R for differential analysis based upon the DESeq2 package. All
additional statistics, analysis, and visualization were produced within R.

Temporal efflux pump activity and inhibition. The efflux pump activity of planktonic and sessile
cells was assessed using the alanine �-naphthylamine (Ala-Nap) fluorescent assay as previously described
(38). For planktonic assessment, four C. auris isolates were standardized to 5 � 107 cells/ml in the assay
buffer solution (MgSO2 [1 mM], K2HPO4 [50 mM], and 0.4% glucose, pH 7.0). For sessile cells, biofilms were
grown in black flat-bottomed microtiter plates for 12 and 24 h. Following biofilm development, these
were washed with the assay buffer solution. The reaction was then initiated with the addition of
100 �g/ml Ala-Nap and developed for 60 min at 37°C. Fluorescence readings were obtained every 30 s
using a fluorescence plate reader at an emission/excitation wavelength of 355/460 nm. In addition, the
efflux pump inhibitor (EPI; L-Phe-L-Arg-�-naphthylamine dihydrochloride) was used in combination with
fluconazole to determine if antifungal activity could be enhanced. Biofilms were developed in the
presence of fluconazole (128 to 0.25 mg/liter) with and without the presence of EPI at a concentration
of 64 mg/liter and incubated for 12 and 24 h at 37°C. Biofilms were then washed with PBS, before viability
was calculated using the XTT assay as described above.

Statistical analysis. Graph production, data distribution, and statistical analysis were carried out
using GraphPad Prism (version 8; La Jolla, CA) and R Studio (version 1.1). For efflux pump activity
experiments, data were normalized before Student’s t test was used to compare samples. Statistical
significance was achieved if P was �0.05.

Data availability. Raw data files are deposited under accession no. PRJNA477447.
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